Animal cells originated in the Pre-Cambrian seas ## Their survival depended on Na-K ATPase pumps in the cell membrane Single-celled animals in the Pre-Cambrian seas had Na-K ATPase pumps in the cell membrane: • to pump Na+ ions out of the cell. • to pump K⁺ ions into the cell. The intracellular "head" of the Na-K ATPase pump looks like the Snoopydog cartoon character. Hey Mom... can I keep him? Please? The Na-K ATPase pumps force 3 Na⁺ ions out of the cell for every 2 K⁺ ions forced into the cell. Na-K ATPase pumps continuously metabolize ATP in order to pump Na⁺ ions out of the cell and K⁺ ions into the cell, to maintain the cell's inward Na⁺ gradient and outward K⁺ gradient. And, since more Na⁺ ions are ejected from the cell than K⁺ ions forced in, the Na-K ATPase pumps maintain the intracellular negativity relative to the outside. Na-K ATPase pump Note: the black nose, mouth, and eyes were scribbled on this pump by a mischievous child. Animal life originated as single cells in the salty Pre-Cambrian seas, some 600 million years ago. ¹⁸ These primordial animal cells evolved with cell membrane pumps that used ATP for energy ⁵⁰ to create an inward Na⁺ gradient and an outward K⁺ gradient. These "ATPase pumps" forced Na⁺ ions out of the cell and pumped K⁺ ions into the cell from the surrounding salt water environment to create and maintain those gradients. So vital are the *sodium-potassium* (Na-K) *ATPase pumps* that evolution has preserved them to this day in animal cells, where they continuously metabolize ATP for the life of the cell. Due to the non-stop work of the Na-K ATPase pumps, animal cells maintain fewer Na⁺ ions inside the cell than outside, and more K⁺ ions inside the cell than outside. At rest there is a gradient across the cell membrane for Na⁺ ions to enter the cell, and a gradient for K⁺ ions to leave the cell, and the Na-K ATPase pumps also help maintain the intracellular negativity. Copyright © 2005 Cover Publishing Co.